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The continued-fraction formalism demonstrates that the Laplace-transformed dynamical correlations
can be expressed as infinite continued fractions (ICF’s). We propose a generalization of the dynamical
convergence method (GDCM) of J. Hong and M. H. Lee [Phys. Rev. Lett. 55, 2375 (1985)] of perturba-
tively evaluating insoluble ICF’s when a closely related ICF is exactly soluble. The proposed method
overcomes an existing limitation of the dynamical convergence method which involves accurate comput-
ing of ratios of small numbers. The limitations are surmounted by exploiting an “inversion” property of
ICF’s. The GDCM allows computationally fast and simple perturbative evaluation of insoluble ICF’s
with up to 105, £=6, levels of the insoluble ICF when a related ICF is soluble. The method appears to
be appropriate for studies of asymptotic behavior of dynamical correlations described by slowly converg-
ing and nonconverging ICF’s, which are otherwise insoluble, when closely related soluble ICF’s exist.
The desirable feature of the GDCM is that the computation times required to solve the ICF’s are unre-
lated to the details of the convergence properties. The method has been applied to recalculate the
dynamical-spin pair correlation of a recently studied classical XX spin cluster. This application is de-
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scribed in this work.

PACS number(s): 05.70.Ln, 02.60.—x

I. INTRODUCTION

An understanding of dynamical correlations such as
(A(t)B), A and B being dynamical variables, is central
to the study of nonequilibrium processes in physical sys-
tems which are slightly removed from equilibrium. For
most interacting anharmonic classical and quantum sys-
tems dynamical correlations are a challenge to evaluate
[1]. While simulational techniques can be useful for
studying dynamical correlations [2], such approaches are
often computationally intensive and hence unsuitable for

extensive long-time studies. Therefore, it has become in-
creasingly important to develop techniques which are
geared to solve the Liouville equation of motion as accu-
rately as possible to extract long-time dynamics [3].

A formal way of solving the Liouville (or Heisenberg)
equation of motion is by using the continued-fraction for-
malism [4,5]. Using this formalism, one can express the
Laplace transform of a dynamical correlation such as
(A (t)B) as an infinite continued fraction (ICF) of the
following form:

LICAB)Y]=1/[z+A,/(z+A,/(z+A3/(z+A/(z+ -+ ))))]=N(z)/D(z), (1)

where A,’s are equilibrium quantities which are functions
of the static correlations, .£ denotes a Laplace transform,
and N (z) and D (z) provide an alternative way to express
the ICF in Eq. (1) [see the Appendix in Ref. [5] for a de-
tailed discussion of N(z) and D(z)]. In general, most
anharmonic systems, one obtains an infinite number of
A,’s [5]. Typically, A, =n?, 0<¢ =<2 being common [3].
The ICF’s can be accurately approximated by a large but
finite number of poles, typically of the order of a few hun-
dred thousand to a million poles and hence via a finite
continued fraction (FCF), when ¢ <2 [3]. In other
words, the ICF’s are convergent when ¢ <2. In most
cases long-time dynamics can be studied with such FCF’s
and even asymptotic behavior of dynamical correlations
may be occasionally estimable as in the case of two-spin
dynamical correlations in the s =1/2 Heisenberg and
XXZ chains [5,6]. The estimation of an ICF by a FCF,
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however, becomes intractable when ¢—2 [3,5]. Given
that quadratic growth of the A, ’s is the limit of conver-
gence of the ICF’s of interest, this is hardly surprising
[7]. For such ¢’s the ICF’s can no longer be replaced by
FCF’s for purposes of long-time studies as shown recent-
ly in [3]. Even a FCF with 10 poles turns out to be
grossly inadequate for long-time studies in such cases
[3,5].

It turns out that ¢ =2 has been found in recent years in
the study of canonical-ensemble dynamical-spin pair
correlations in some classical spin clusters [8,9]. It was
not possible to evaluate the ICF accurately to compute
the dynamical-spin pair correlation in a recent study of a
classical two-spin XX cluster [8]. Comparable growth
rates have also been obtained for the canonical ensemble
velocity autocorrelation function of a particle in a
multiple-well potential which will be discussed in forth-
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coming publications [10]. Given the current interest in
cluster physics and in the dynamics of anharmonic oscil-
lators, it is imperative that a different approach than
truncation of ICF’s is needed for studying the dynamical
properties of clusters via the continued-fraction formal-
ism. That is precisely the focus of this work.

This work is arranged as follows. Section II presents a
brief sketch of the formalism. Section III discusses the
generalized dynamical convergence method (GDCM) of
approximately evaluating insoluble ICF’s. Section IV de-
scribes the application of the GDCM to the study of the
spin dynamics of a classical two-spin XX cluster and Sec.
V closes with a summary of the work described here.

II. SKETCH OF THE FORMALISM

In this formalism, one writes [11]
d—1
A= 3 a,(0)f, , 2)
n=0

where f,’s are time-independent bases in a Hilbert space
defined by the following inner product (the following
choice being motivated by the Kubo formula for suscepti-
bility), i.e.,

X N=01/p [lar(xmyh 3)

where ( ) implies a canonical ensemble average and
X (M) =exp(AH)X exp(—AH), where H is the Hamiltoni-
an and A is a dummy variable for inverse temperature j3,
describes the “temperature evolution” of X [11]. Choos-
ing f, and using the above formula to orthogonalize f,’s
in the Hilbert space of f,’s one finds the following two
recurrence relations which completely determine {f,}
and {a,(#)} in Eq. (2) and hence completely solve the
Heisenberg equation of motion. These recurrence rela-
tions are

fn+1=i[H’fn]+Anfn—1 ’ (4)
where ai=1, A, =(f,,f,)/(fn—1-fn—1), and
da,(t)

A, a8y ()=~ +a, (1), (5)

dt
for all n>1 and the last term on the right-hand side of
Eq. (5) is absent for the n=0 case. As noted, the choice
of the first basis vector f is arbitrary when defining a
Hilbert space. In this case, f,= 4 (0), turns out to be an
appropriate choice and one can generate the rest of the
f»’s and the a,(t)’s for our problem using this choice of
fo and using Egs. (4) and (5). The Laplace-transformed
equation (5) can be expressed as an ICF as follows [11]:

ag(2)=1/[z +A, /(2 +0, /(z+Ay/(z+ )],  (6)

where the ICF above is, in general, infinite [12]. The re-
laxation function a(z) can then be determined as in Eq.
(1) and the higher relaxation functions then follow from
Eq. (5). Evaluation of the ICF in Eq. (6) amounts to solv-
ing the second recurrence relation in Eq. (5) which, in
general, is extremely difficult to solve. Nevertheless, the
ICF representation of a dynamical correlation is a power-
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ful and convenient one. While the exact solution of Eq.
(6) is often not possible, approximate solutions may be
obtained. An approximate estimation of Eq. (6) is there-
fore important.

III. GENERALIZED DYNAMICAL CONVERGENCE
METHOD

In the dynamical convergence method (DCM) an inso-
luble ICF is approximated by substituting the insoluble
ICF with a soluble ICF beyond a certain level of the ICF
[13]. In the Hong-Lee DCM work [13], it turned out that
it was difficult to carry out a perturbative evaluation of
an insoluble ICF accurately when, typically, more than
fifth-level corrections to some closely related exactly solu-
ble continued fraction to approximate the insoluble ICF
was necessary. The numerical errors in the computation
of the ICF for all the z values, especially the smaller z
values, became especially significant when, approximate-
ly, tenth-level corrections were to be made [5]. The pri-
mary reason for this limitation lies in the fact that the
computation of the insoluble ICF as a perturbation of the
soluble ICF can be viewed as a calculation of a ratio of
two polynomials which typically involve division between
small numbers [5]. Such problems are often encountered
in high-temperature series-expansion studies in physics
for instance [14]. The numerical accuracy therefore be-
comes difficult when the ratio of small numbers can be a
large number and hence the difficulties concerning the
practical implementation of the DCM.

The GDCM under discussion here solves the difficulty
of doing the DCM with a large number of levels. In fact,
the GDCM allows one to construct an ICF with little
effort when some related ICF is known with as many as
108 corrected levels. Calculations with as many as a mil-
lion poles is possible in a mini supercomputer. We expect
that this huge improvement in the ability to do DCM cal-
culations for evaluation of dynamical correlations will be
of much use in realistic calculations. It appears that the
study of cluster dynamics is one of the areas in which the
GDCM approach might yield reliable results for dynami-
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FIG. 1. Self-consistency check for a§(¢) obtained via the in-
version lemma. Observe improved accuracy at larger times.
Time and frequency are scaled by J(=1) in all the plots.
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cal correlations. This would indeed be interesting be-
cause clusters can exhibit slow relaxation processes and
can therefore, possibly, be associated with a rich variety
of relaxation processes.

Formally, the GDCM can be described as follows. Let
ay(z) and ad(z) [Eq. (6)] be, respectively, the insoluble
and the soluble ICF’s. Let the soluble case be given as
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ad(z)=1/[z+A%(z+AY/(z+AY/(z+ ---)N],

and let A, —AY for large n, where A,’s define the insolu-
ble ICF to be evaluated. Let A,=A%+¢,. If there ex-
ists, for all practical purposes, some regime in which
Ag >>¢, then for L =~p we can approximate a,(z) faith-

P
fully by

(7

1 1
L = = (8
ag (z) R Al N A] ’ )
z A, z A
z+ " z+ :
z+ : z+ -
A L—1 AL —1
z+ z+
A Ap
z+ z
AY 4 a;(z)
z+ X
z+ —L 2
[
where we let Proof of the inversion lemma. Let us recall that
AO
ay(z)=z+ Lzl 9
A% 1) o 1
z+ AO ap (Z) = 0 ( 1 1)
L+3 A7
2+ 2+
AS
z+ o
While it is always possible to express a; (z) as a quotient 2+ f_3
of polynomials in z and a3(z) [5], the coefficients are tedi- .
ous to compute. Furthermore, the calculations of a(z)
via that approach typically involves division between d
small numbers which might lead to a large number as al- an
luded to earlier. The latter is often difficult to perform A0
accurately as is well documented in the physics and _ L+1 >
applied-mathematics literature [14]. In fact, this is pre- a (z2)=z+ AY ., (LZ0). (12)
cisely the drawback of doing the DCM directly to any z+ 5
desired high order as mentioned above. Fortunately, it is 2+ A_L +3

possible to express a; (z) more simply as an “effectively”
finite continued fraction (FCF) with L levels as below.
The expression for this FCF can be obtained via an inver-
sion lemma which is presented below. The “effective”
FCPF’s can be easily calculated as demonstrated in [3,5]
and no longer present any computational difficulties.

The main result of this inversion lemma is

_A(I),
Af

0
AL—2

ar(z)
z+

z+

z+ : 5
Az
z+

z+

Observe that this makes ay(z)=1/ad(z).
follows that

Therefore, it

0
AL+1

—_— . 13
ar +1(z) 1

a;(z)=z+

and therefore

0
AL+1

PREE—. (14)

aL+1(Z)=

It follows then that a; (z) can be written as
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Af Af
aL(Z)= AO = AO (15)
L—1 L—1
o —z z+ 5
A} AL
: —z z+ :
. —z z+ -
A9 A
o —z z+ o
Al —z z+ a
01 —z - 01
ay(z) ay(z)

Q.E.D. The right-hand side of Eq. (15) is the same as that of Eq. (10).
Therefore, one can now use the following form in our calculations and exploit the existing direct summation method
of evaluating FCF’s recently introduced by Sen and co-workers [3,5],

af(z)= A (16)
z+ IA
z+ 2:
+ :
: A,
z+ A
z+ LO
_AL
A9 _
z+ L :l
z+ =
A
z+
A
z+ 1
7 —
ad(z)

Often one finds that Aj— y2A% for some problem. In
these cases, one can simply substitute aJ(z/y)/y for
ad(z) and yZAO for A2 in the above formula.

The error in af(z) can be estimated as
la§(z)—a§*'(2)|/lak(2)|. In order to test the accuracy
and correctness of our algorithm, however we let
A,=A%=n? for all n and set L=5000. A quadratic
growth law for A% provides an exactly soluble ICF [7].
Therefore, in this special case, ak(z)=al(z)

f du exp(—zu)sechu in Eq. (16). We then evaluate
a{;(z) using Eq (16) by putting ao(z) at the L=5000th
level. Since in this test case A, =AY, the af(z) thus ob-
tained was equal to aJ(z). It is worth noting here that
the construction of the inversion lemma allows us to per-
turbatively evaluate an ICF with a quadratic or faster
growth rate without costing excessive computer time.

The same af(z) can then be used to recalculate aJ(z)
by substituting the ICF in Eq. (16) by a5 (z) at the 5000th
level The inverse Laplace transform of ak(z), ie,

L(t)=secht can then be calculated numerically by in-
tegratlng a{§(z) along the line R (z)=0 using the method
of Krump [3,5,15]. This calculation yields an a(¢) for
L=5000. As shown in Fig. 1, the error incurred in our
GDCM calculation tends to O as ¢ increases. It is impor-
tant to note that the relatively large error in Fig. 1 as

t —0 enters while performing the inverse Laplace trans-
form and does not reflect any limitations of the GDCM.
In fact, the t—0 calculation can always be accurately
performed via short-time expansion of a3(¢). The above
calculation was also repeated for other L values and
equally good results were obtained. Tests were also made
with A, =y2A%=9?n? by varying L and no change in
a§(t) (for constant y) was detected.

Two important advantages of the GDCM, which by
definition permits studies of long-time dynamics, are as
follows: (i) provided enough A, ’s are known for the inso-
luble ICF to be evaluated and provided this ICF con-
verges sufficiently rapidly to a soluble ICF, it may be pos-
sible to extract a significant amount of information on the
asymptotic behavior of a,(¢) using this method. This is
precisely what we are able to obtain for the case of a
two-spin XX cluster, a problem that has been recently
studied by Liu and Miiller [8]. (ii) It is well known [7]
that ICF’s with ¢ —2 approach the limit of convergence,
implying that they can no longer be approximated by
FCF’s for studying long-time dynamics. The GDCM
does not rely on approximating an ICF via a FCF al-
though it treats an insoluble ICF as an effectively FCF
with the inversion lemma. Hence the computation of the
insoluble ICF can be carried out efficiently in this ap-
proach.
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IV. APPLICATION TO THE TWO-SPIN XX
CLUSTER

Consider a Hamiltonian of a classical XX model with
only two classical spins, i.e., with angular-momentum
vector S;. The Hamiltonian for this system is given by

H=(S%-83+5%-8%)=cos(d;— &) , (17)

where the angles ¢, and ¢, describe the orientations of
the two classical vectors in the x-y plane with respect to
the x axis. The Liouville equation of motion for ST ,(t)
has been studied recently by Liu and Miiller [8] for this
problem. They find that the dynamical correlation
(87 ,(¢)S7,) for this problem at T = o can be described
by the following sequence of A, ’s for 1 <n <18 (see Table
I). The sequence appears to increase very nearly quadrat-
ically.

In what follows we present results from a calculation in
which we used the first 18 A, ’s as obtained from the actu-
al calculations in the Liu-Miiller [8] work and replaced
the rest of the A,’s by a quadratic formula for A,. It
turns out that for corrections up to level n equal to 7 and
8, we obtained correlation functions that were very stable
with respect to further corrections (see Fig. 2). The cor-
responding frequency spectrum is given in Fig. 3 and
shows a well-defined shallow peak that would not enter
without the corrections we have performed. There was a
slight shift of the shallow peak toward a higher frequency
when the highest-level, i.e., L=18, corrections were made
with a marginal difference in the peak positions between
the L=17 and L=18 cases. The time-domain results also
show very little difference between L=17 and L=18 or-
der corrections. Interestingly, a plot of logay(t) vs log?
(not shown here) reveals that the oscillatory envelope for
the relaxation function decays as an exponential with the
following law: ay(¢)—exp(—0.1¢), which has a prefactor
to time in the exponential function that is half of the pre-
factor if the entire set of A,’s were approximated by

TABLE 1. A, vs n for the two-spin XX model.

n A,
1 0.33333
2 0.66667
3 2.28000
4 3.39669
5 5.38884
6 8.81650
7 10.22152
8 15.88268
9 17.80241
10 23.91886
11 28.21480
12 33.47531
13 40.64990
14 45.43127
15 54.41163
16 60.11017
17 69.53225
18 77.19229
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FIG. 2. Plot of af(¢) for various L values for the two-spin
classical XX model of Liu and Miiller [8].

. =n2. Therefore, the GDCM reveals that the asymp-
totic behavior of the dynamical-spin pair correlation is
actually altered in this problem and is distinctly slower
than what has been previously found in the approximate
calculations of Liu and Miiller [8]. The numerical esti-
mates of the long-time decay characteristics of the
dynamical correlation can, in principle, be made exact via
an extensive analysis of the perturbed ICF with the per-
turbation running through all the infinite number of lev-
els.

V. CONCLUSION

In conclusion, we have shown that the dynamical
correlations of systems with insoluble ICF’s may be es-
timable via the GDCM if a closely related ICF is exactly
soluble. The method relies upon expressing the insoluble
ICF via an “effectively” FCF using the newly introduced
inversion lemma. There is no truncation of the ICF in-
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FIG. 3. Plot of frequency spectrum of the dynamical-spin
pair correlation a§(w) vs o for system in Fig. 2.
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volved here. Thus, asymptotic behavior of dynamical
correlation is, in principle, estimable via a GDCM calcu-
lation. The method, when feasible, is also independent
of the convergence properties of the ICF under study.
Finally, we have applied this method to estimate the
dynamical-spin pair correlations in a two-spin classical
XX cluster. The ICF corresponding to the dynamical-
spin pair correlations in this problem is insoluble. We
use the GDCM to estimate the solution to the insoluble
ICF by replacing the actual ICF with the soluble ICF for
level L > 18. The results reveal that the relaxation func-
tion exhibits damped oscillations which are stable against
corrections to the ICF. The corresponding frequency
spectrum reveals a well-defined side peak at a higher fre-
quency that was not found in a previous calculation [8].
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Furthermore, we estimate that the damped oscillatory
dynamical-spin pair correlation decays approximately ex-
ponentially as exp(—0. 1¢), which is significantly slower
than the behavior exp(—0.2¢) previously estimated [8].
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